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I. Introduction

Probabilistic processing is a metiod of processing the output
dats of an array of seismometers with the aim of detecting earthquake
or u.Jerground nuclear blast signals in the presence of ambient seismic
noise. This method is based on the assumption that the array output
is Gaussian with mean zaro and knowr covariance matrix ﬂl or 02, depending
on the absence or presence of signal. |

The decision regarding presence or absence of the signal ig therefore,
made equivalent to testing the hypothesis that the observed date is from
a Gaussian population with covariance matrix Ql with the simple alternative
hypothesis that the covariance matrix is 92.
The univariate situation is: a singls value x is observed from &

Gaussian population with mean zero, It must be decided whether x is

more representative of a Gaussian population with variance oi or og .
The two density functions are

1 2,,.2

f,(x) = axp (-x“/207)

1 /Eﬁ'oi 1
()

fo(x) = exp (-xaleag)

%
f, (x)
fo(x)
-« O 4
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{i where g, > 0; . Clearly it is more likely that x is from fl(x) if
b Ix] < ¢ and more iikely that x is from fa(x) if Ix| > ¢c. So the metnhod
f% of processing in this case reduces to just squaring the observation x

and comparing the result with a fixed constant.

el K

If a vector x of dimension k is observed, then the two density

functions become:

f,{x) = (am)

Y

(2)

o |

fa(x) - (2!!)"‘/2 l02|-1/2 exp (-xT ﬂ;l x/2).

bt

These equations can be compared to find the set of vectors x for which

[ R

fl(x) > fa(x). Thus if '
- 07 xze = In (0000) (3)

.l

then fa(x) Z,fl(x).

>

The test statistic xT(nil - n;l)x must, therefore, be computed frum

- the data. The detailed calculation of the test statistic in terms of

.

array data is given in the foilowing section.
{j A more rigorous development of the test statistic based on Bayes

Theorem has been presented in a preceeding speclal rcoort}

II. Calculation of the Test Statistic
A. Notation
The data from an array of seismometers can be represented by

the matrix X where the rows correspond to the seismometers and the columns

-
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to the time sampled dats -
Xll 812 * s o xlN
Xo1 Xpp v ¢ ¢ *on
X = ' .
x'u XH2 « o x"“
- -

Thus, %] is the observation from seismometer | at the time j.
The elements of the matrix X can be ''strung out' into a single vector

y in the following manner:
L (xT xT xT)
Y l’ 2’ e o N

: T
where nj (xlj’ Xppr * v 0 x"j). This vector y is now the vector of
obse-vations from vhich the test statistic (equation 3) will be computed.
Since the mean of y Is assumed to be zero, the coveriance matrix of y is
just

ki
Oy Yy

and the dimension of ny is MN by MN since there are MN elements in the

T . T T
vector y. Let rli-jl+1 = xixj if j>1i and r”_“+ 1" x‘xj if j <1i andwrite

T T T T
Xlxl x1x2 x1x3 ¢ o xlxN
T T T T
-_' xle xaxa xaxa s o 0 xsz .
v = | . )
T
XK. ¢ o ¢ ¢ o 0 0 ¢ 0o XX
™1 NN |
so that - -
' fl l’2 ¢ s o I’N
T
l’a l'l e o o F Nel "
OY - : = R
T
r [ ] [ ] [ ] r
N 1

where esch submatrix Fi Is an M by M metrix.




A. B.

oljw

N
8. Inverse of R
The inverse of RN cen be obtained from the solutions of the two

systems of equations

RV (1) (} PN\ and &Y (I‘:'\ (o)
™ 0 y y
'2 - * : = : ) (S)
. - o' 10,
\le \O J e \f"]
\ ")
Partition RN in the fashion
[rN-1 1
N |
R taT - o -E—D
then
Nt | A i AaoilaTA S-Au;l
(R7) I B oL SR L LI
oo = '." -61 B'A : 61

where the dot indicates 2 matrix of zeros and

Am (RN.l)-l

6, = 0 - 8.
From equation (%) the last M columns of (RN)"1 are

o ]

ThI Py) -




A. 8
.s.
S0 that
7~ NY el
TN (Pﬁ)
-1
-A861
* =
. .1 L
N' o yed 6
P2 (PN) 1l
1y=1
UPN) w,
[ ]
N
Since (P"‘) =6~ and ; }- =AB , it follows that
]
2
T
) el (o)
G i
.1 T L ] L ]
AB61 B A - . .
] [ ]
2 z
\ ©J \ € J
Now partition
' T
N |Ph-C .
RERs N-1
¢! R
|
to get '
Y. 8 v -873cTa
(RN)-I - :— == + 2= :l:-- --2-1—1.-

where 6;1 L I CTAC. As before, it follows that

) a ()T
R e [
-1 .
“62CA. . .
. o
"y wy

bk

(6)

(7)

Denote by ’?} the ijth M by M submatrix of the inverse of A, From (6) and (7)
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the foliowing equations can be written:
N N-l J ] -l J T
Si;"%; ¢ Theter (P0) r:-j+l (8)

‘,j.l,ooo, N'l

N N-1 1 NT
Sig1, 1" %5t r?+l(PN) r?+1 (9)

i,j‘l,ooo,"'l

Now by subtracting (8) from (9), the basic iterative formula of equation (10)
is obtained

’?+", ja *® ’?j * r?+l(PN)-l r?+I B r::i+1(9§)-l r::jll (10)
and the entire inverse matrix can be cenerated starting with the first

M columns of the inverse which is the first column of the s?j's avaiiable

from equation (5).

C. The Quadratic Processor

Supposa the matrix X = (xl, 5 6 0 p xT) is observed. Then the

test statistic

cen be avaivated for i = 1, ., ., . , T=-N+l where

Y.‘r- (x{, see o x:+‘-l)
-1 -l
C -~ Ol - 02

A program to perform this caiculation has been written. In addition,
an integrated, souared multichannal Wisner filter output is available as
an option in tha quadratic procassor program to give a compsrison batwsen tha

two datection methods.
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D. Multichannel Time Series Data Generation
It is desired to gererate multichannei data x{ = (xli’ INTRRYY x"i)
with the covariance matrix RN. Let F? i=2 ..., N and PN satisfy the

system of equations (5). Suppose y{ is a supply of vectors satisfying

Eyi = 0

T
Ey;v, = L.

Then X; will be generated by the following equatlon**
T T
x; = =9 x, g = e o) Xt (1)

for i > N where X) = €1y Xo = €5 o 0 0y Xy o 0F €N-1° The method of
determining the €, is

€ = Hy,

where HHT = P.. The reason for this is that €

N must satisfy

T
Eeiei = PN'

Determination of an H satisfying the above is accomplished by requiring
that H be lower triangular.

The x data generated by Equation 11 has the correlation matrix RN
of Equation 5. This is established by multiplying Equation 11 on the

right by xT

tei and then taking the expected value.

**This equation was given incorrectly in Section IV of the Array

Research Semiannual Report No. 2.




E. Eigenva'ues

The test statistic is

P(x) = U (O;l - P-l)x

o (12)

s T e B - DR .. DN ... JENN

where Ol and 02 are Toeplitz matrices. Let the observation vector x be

transformed to z by the NM by NM nonsingular transformation x = Sz such

that

P(x) = szT(Dzl - D;J) Sz = 20z (13)

where D is diagonai. Then the computation of the quadratic form is reduced

e JENE o T

to filtering operations, foliowed by @ sum-ation of the squared outputs. A

{ especially importent transformation, diagonaiizing both O;l, n;l simultaneousiy,
- exists since A = 011 and B = n;l are positive deflr_\ite.2 This transformation
ia is found by solving the following generaiized eigenvaiue probiem.
- The soiution for A's satisfying
’ 1A - Bl = O (14)
F is caiied the generaiized eigenvalue problem. The corresponding set of
vectors x such that
Ax = ABx (15)
) are the generalized eigenvectors. The matrix M whose columns consist of
these eigenvectors normaiized fo that xTBx = 1 can then be shown to satisfy
., MTAM = A
. WM = I (16)
where A is @ disgonail mat}ix with elements A.
- . Thus if the S of equation (13) is taken to be M, then the diagonal
* matrix D satisfies
) D=A- I (17)
R B ot a e ey e v i iga

= SEEN s RN e




.II. Theoretical Evaluation

A. Quadratic Processor

It is desirabie to determine operating parameters for the quadratic

detection function

P(x) = x' (n;1 - ﬂ;l)x. (18)

Two useful parameters are the false alarm rate @ and the fallure to detect
rate B. These parameters are defined Iin terms of the distribution of P(x)
when x Is from 01, say fI’ and when x Is from 02, say fII’ The covarlance
matrix 01 wiil represent nolse and 02 will represent signal plus noise. The

paramsters a, B can now be expressed by

a-Prob<P(x)>c|er> )
(19)
B =Prob { P(x) <c |x eI}
and are the probabilities of the two types of error which can be made. The
other situations
P(x) < ¢ 'er
(20)
P(x) >c | x eTI
represent correct dccisions by the method of probabilis lc processing.

Suppose the data x Is transformed by the matrix M of seztion E.

Then

x = My

P(x) = y'NT (72 - ZV)my

(21)
=y (A- Iy
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where A is a diagonal matrix with elements k' satisfying the generallized

eigenvalue equation
EXSTN (22)

It follows from the definitions of 01 and 02 that A>1. Anccher equivalent

expression for 22 is
lnznzl-ul-o (23)

so that

=1 -1
'nao1 |.‘n1 nal.litx' . (24)
Thus the constant ¢ of Eguaiion 3 can be written

c=1Inl ll =X In k' . (25)
i i

If we insert 01 = N and ﬂ2 =S + N into Equation 25 It follows
that
N© - (A =1 -0,
isvt-(-11=0 (26)
Since S and N are positive definite, the roots of SN-l are positive and

therefore A l>1.

The distribution of y, If x € II, Is multivariate normal with mean
zero and covariance matrix H—lT 02 M-l = I, It follows from Equation 21 that

P(x) has the same distribution as

L s

] z'lnlii(n) (27)
]

.

L
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where n‘ = Xl = 1 and the xi(') are Independent chi-square random variables

each with 1 degree of freedom.

- -1T
If x € I, then y is multivariate normal with covariance M ) Pl M
AL, Now transform y to a by
y =AYV, (28)
so that covarlance of a Is I and
P(x) =y (A=T)y=a' A2 (p- a2,
(29)
-al (1 - A-l)l
so that P(x) again has the distribution as the expression (27) with
n =1-27t (30)

This result could also be established by defining the columns of

H' to ba the elgen vectors corresponding to the eigenvalues A' satisfying

1,001 | .
|02 Xy 0o,

where
H'Tﬂilﬂ'-l
T a1 Vo A
M 02u A
and If X = M'y , then

P(x) = yT (I -A')y . Now, when x € I, y Is multivariate
normal with mean zero and covariance matrix I so that P(x) Is distributed

as Equation 27 with n = 1~X' but A' =1/A ylelding the same result

as before.
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The exact distribution of Equat{on 27 is not known in ciosed form. Several
approximations have been considered in the llterature.3

We will be content to assume that Equation 27 is approximately distributed
as 615 where 8, v are determined by setting the mean and varlance of 615 equal

the mean and varlance of Equation 27. This results in

0= 02/2g
(31)
Ve 2u2/02
where P
K= Z ﬂl
i=1
(32)

It is possible to arrive at the sbove approximation by applying a
result of Patnalk&, which relates a non-central chi-square varigble to a

constant multiple of a chi-square

11“ ~ 61. , (33)

to each term of Equation 27; then use the addition theorem for non-central chi-
square va'ues, and finally apply Patnalk's result to the summec non-central
chi=squares. The advantage of the above approach Is in transmitting the
known qualitlies of the approximation (33) to the approximation given by
Equations 31 and 32,

The above results can be applied to the palr of Equations (19)

to obtain




=]3=

a = Prob {%3> c/b | n=1- A;I}

(34)
2
8 = Prob {Xv<c/6 |Tl' -Ai -1.)

where v and 6 are defined In terms of the " values by Equations 31 and

Note that both the approximate and true means and variances are

given by

P
Uy = 21(1 - Ai)

P.
uu - lgl(x' - 1)

P (35)
ai =2 21(1 - A" )2

P.
2 2
0rr = 2 Z.l(k' -1)

and that since each term of My Is less than the corresponding term of Byp

it follows that H11 > By » °§I > ai as expected.

It is not necessaiy to calculate the individual A's to apply the

approximation or to obtain the parsmeters given by Equations 35. From

section E,
P uanlnn (36)
so that
Wha, ot - A (37)

B
ﬁ‘a

pa]
ot

e

wd
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I D SR

and

( Zklntrl\-trﬂeﬂil . (38)

E Also
r" fo-:rm-:rn'lnanfnanilu
) = e 007, &
. and It follows that
f lx; = o 0o

(40)
[ Zx;a-unlnglnln; .

; Thus the approximation parameters v, 0, and the population means and
varlances can be written In terms of the original correlation matrices

- and thelr Inverses.

B. Squared Multicha.nel Wiener Filter

The optimum Wiener cosfficlents to estimate the signal at a

selected seismometer are glven by

0, W=y (b1)

where

Q, = covariance matrix of signal plus noise (NM by NM)

- W = optimum fllter coefficients (NM by 1)

i~ Y = selected signal correlations (NM by 1.).

| The original array data Is then flltered
i . .
y,= L v . _

=W X (b2)




where

and the resulting time trace Ye is the optimum (mean square error)
estimate of the signal trace. It is desirable to consider the output
squared yi , as a competitor of P(x) for signal detection. We therefore

want the istribution of yf when x_ € I and when xtc II. Since Ye is

t
a linear combination of normal random variables, Ye is normal with mean

zero and variance

02 = HT Qx W (“'3)

2

2 -
Thus Y, has the same distribution as @ 7L§ e Sincoe W= 021 Y, 02 can

be written

-y taaly . )

If x € II, then Qx = 02 and
02

-y n;l Y=y W (45)

whereas

o =y e aly (46)

when x ¢ I, The quantity YT W is simply related to the mean square

error which is output in the multichannel filter progran which deterrines

the filter coefficients W.
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IV. Discussion of Processing Results

Correlation matrices for an annular ring noise model (3-4 km/sec)
and a solid disk (8 km/sec) signal model were generated by an existing
program5 and used as input data to the sequence of programs discussed in

Section II. The frequency spectrum for both signal and noi-e was left

s S

white., The center and three outer seismometer locations of the triangular

; {: WMSO array were used thereby generating 4 by 4 correlation submatrices
P for 25 lags.
E .1 km A
s[ i i .4 v
: A\ o A\
|
2

'x

3

*

| .

¥ L
-

L]

Geometry of the WMSO Array Locations Used.

The 10 lag matrices for both noise and signal plus noise were inverted and the

P,I" matrices for cach were writter on CPT to be used in the data generation

¢

el L, et
L4 +

program. The random error values ¢ are different (independently generated)

for each of the 6 traces shown in Figures 1 and 2. The difference of the 2

 p—

inverses was also written on CPT to be used in the program which evaluates the

quadratic processor. A plot of the quadratic processor output as a function of

b,
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time is given in figure 1. The left and right portions are quadratic
processor output for dat: generated with the noise correlation matrix
and signal plus noise correlation matrix respectively. The horizontal
line separating the two curves is drawn at the amplitude ¢ of Section II.
The mean and variance (average sum of squares of deviations about the

mean) calculated from the two plots of figure 1 and corresponding theoretical

values are
m, = 16.0 kg = 17.0
s; = 11.8 o§ = 18.0
m, = by b4 Mip = Ly,2
s5 = 217.4 0%, = 227

The values of p and 02 very accurately predict the calculated
vaiues m and 52. These results show that the effectiveness of the
quadratic processor may be conveniently determined from t..e correlation
matrices on a theoretical basis.

There are U points of the 480 noise points greater than ¢__ and &

10

points of the LU0 signal plus noise points less than ¢ ignoring the

10 (
first 20 points of the second trace due to an unfortunate end effect).
The measured values of @, B are approximately .008 and .018 respectively.

The theoretical values of @, B are given by

Prob {xga > so} = .01k

Prob {xf,, <10)< .14 .

Exact values are unavailable for &, B due to inadequate y? tables.

a

o o]
L]
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The same models, using 25 lags, were also evaluated and the results
are summarized in Table 1. The quadratic processor output is also plotted
in Figure 1.

The theoretical values for a, B for 25 lags are approximately

a = Prob 9§0> 120 = ,0013

B = Prob 7‘5& < 20.b = .005

L3

where the normal approximation has been used.
From the evaluation of Equations 45 and 46, it was found that

for 25 lags the squared four channel Wiener filter is distributed as
2
€5 % if xelIl
2 .
.18 #1 if xelI,

The filters were determined and applied to data generated from populations
I and II. These results are plotted in Figure 2. The sample means of
I and IT are .72 and .19.

No natural critical level c is 2vailable as for the quadratic
detector. For comparison suppose we consider @ = 8. Then the critical
level is approximately .15 and @ = B = ,36.

It should be noted in the above comparison that no summation
over the squared output has been made. The reason for this is that
(25) + (&) of the original data points wi!l produce one output point by
either of the two detection methods. If one sums over a gate length other

than 1 for the Wiener trace, then more data is used and it would only

be fair to allow smoothing for the quadratic processor.
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One argument against the above is that summing for one of the
two methods may be mc:e bereficial than for the other., The 'whiteness"
of the Wiener outputs suggests smoothing is of greater importance to the
Wiener process than to the quadratic process. The results of Figures
1 and 2 for 25 lags were smoothed over a gate length of 10 and 25

points and the results shown ‘n Figures 3 and 4,
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10 LAGS W S +N

At /W

25 LAGS B S+N

C=674

Figure 1., Evaluation of the Quadratic Processor for S = 8 km/sec Solid
Disk Signal, N = 3-4 km/sec Annular Ring Noise, 4 Channels
(Center and Outer Lccations of the WMSO Array)




|
0.85




i

| .' }L LG Ly
i WL JLMMWW

SIGNAL + NOISE

Figure 2. Wiener Filter, Sum and Square Process — 4 Channels, 25 Lags
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SIGNAL + NOISE
- SMOOTHED OVER 10 POINTS

C=674

C=67.4

SIGNAL + NOISE
Tt SMOOTHED OVER 25 POINTS

Figure 3. Results of Figure 1 Smoothed Over 10, 25 Points,
Quadr .ic Processor, 25 Lags
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SIGNAL + NOISE

F OVER 10 POINTS

SIGNAL + NOISE
K OVER 25 POINTS B

Figure 4. Results of Iigure 2 Smoothed Over 10, 25 Points,
Wiener Filter Sum and Square Process
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g Table 1. QUANTITATIVE RESULTS FOR 25 LAGS
| I II
! m 43.58 136.28
] s 97.73 1570.08
7 o° 47.20 1020.17
1l 5.4k x107L3 16.84 x1017
.
- c25. - 67.45
l trace f, n;l = 248,90
i -1
4 trace (, 0, - 5T7.24
i trace 02 n;l 02 0;1 = 1417.96
i 1, Al
. trace ﬂl 02 ﬂl .02 = 38.08
.
[
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